Guillain-Barre Syndrome as the initial manifestation of Pediatric Systemic Lupus Erythematosus

Tanai Trongkamonthum, Charcrin Nabangchang, Piradee Suwanpakdee*

Division of Neurology, Department of Pediatrics, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand

*Corresponding author: Piradee Suwanpakdee, Section of Pediatric Neurology, Department of Pediatrics Phramongkutklao hospital, 315 Ratchawithi Road, Ratchathewi district, Bangkok 10400, Thailand. Tel: Email: piradee@pedpmk.org

Received Date: 27 August, 2018; Accepted Date: 31 August, 2018; Published Date: 11 September, 2018

Abstract:

Background: Various neurological manifestations of pediatric systemic lupus erythematosus (pSLE) have been reported. However, Guillain-Barré syndrome (GBS) as the initial presentation has rarely been documented. We report a case of the acute motor axonal neuropathy (AMAN) subtype of GBS as the first presentation of pSLE.

Findings: A previously healthy 11-year-old girl was admitted for a respiratory tract infection. Subsequently, she developed acute progressive weakness and respiratory failure. Nerve conduction velocity findings were compatible with the AMAN subtype of GBS. Further investigations revealed proteinuria, hematuria, elevation of ANA levels, anti-dsDNA, and a decrease in complement components. Pediatric SLE was diagnosed using the The Systemic Lupus Collaborating Clinics (SLICC) criteria. The GBS did not improve after intravenous immunoglobulin therapy, plasmapheresis (PE), or pulse methylprednisolone but gradually improved after the third cycle of intravenous cyclophosphamide, with complete recovery at 4 months after the treatment.

Conclusion: To our knowledge, this is the first and youngest case of pSLE in which the patient presented with GBS and achieved complete recovery following immunosuppressive therapy. Our findings suggest intravenous pulses of cyclophosphamide to be the most effective treatment in the case of GBS and SLE.

Keywords: Guillain-Barré syndrome; Acute motor axonal polyneuropathy; Pediatric Systemic lupus erythematosus

Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease with heterogenous multisystem involvement. Neuropsychiatric manifestations are not uncommon and can occur at any stage of the disease. However, Guillain-Barré syndrome (GBS) as an initial presentation has rarely been reported [1,2]. Here, we report a child who...
presented with GBS as the initial manifestation of pediatric SLE (pSLE).

Case Report

An 11-year-old Thai girl with no past medical history was admitted for a respiratory tract infection. After 24 hours of hospitalization, she had generalized weakness with neck pain. Physical examination revealed flaccid weakness of all extremities and hyporeflexia. Other physical examinations were unremarkable except a discoid-like rash on her right pinna (Figure 1).

![Discoid rash](image)

Figure 1: Discoid rash.

Three hours later, she developed dysarthria and impending respiratory failure. Her blood pressure was high. We secured her airway using intubation and transferred her to the pediatric intensive care unit (PICU). Acute flaccid paralysis was the primary issue in this patient. The differential diagnosis included acute transverse myelitis, GBS, and acute disseminated encephalomyelitis. Initial laboratory tests revealed a normal complete blood cell count. Serum electrolytes and renal function test results were all within normal limits except urinary analysis showed hematuria and proteinuria (urine protein, 3+). A lumbar puncture (LP) was performed and the cerebrospinal fluid (CSF) profile revealed 31 mg/dL protein, 72 mg/dL glucose (blood sugar 120 mg/dL), and no cells. CSF examination findings for infection, NMO-IgG, and oligoclonal band were all negative. Magnetic resonance imaging (MRI) of the whole spine and brain was unremarkable. Nerve conduction velocity (NCV) tests and electromyography (EMG) were also performed. The sensory nerve conduction study (NCS) disclosed normal distal latencies and sensory nerve action potential (SNAP) amplitudes of the bilateral superficial radial and sural nerves. The motor NCV revealed an absent response in bilateral tibial, peroneal, and right ulnar nerves. These findings were consistent with the acute motor axonal neuropathy (AMAN) subtype of GBS.

Because the discoid-like rash on her pinna was notable and the abnormal urinary analysis findings, we decided to further investigate for SLE. She had positive ANA (1:1280), anti-ds DNA antibody, and low C3 and C4 levels. Pediatric SLE was diagnosed using the SLICC criteria [3]. We began to manage the patient’s condition with IVIG 1 g/kg for 2 days as per the standard treatment of GBS, followed by plasmapheresis for three sessions and pulse methylprednisolone for 3 days. However, her clinical condition was worsening. On day 13 after hospitalization, she was totally paralyzed, including the facial muscles, and her pupils did not react to light. At that time, intravenous cyclophosphamide (IVCY) pulse therapy was given (as per Figure 2). Her clinical condition gradually improved after the 3rd dose of IVCY and full recovery 4 months after the treatment was achieved.
Discussion

We report a case of Guillain-Barré syndrome in pediatric SLE which occurred at the onset of the disease. The prevalence of SLE in patients with GBS has been reported to lie between 0.6–1.7% and it usually occurred during the course and not the onset of the disease [1]. The exact pathogenesis of GBS and SLE is not well understood. Previous studies have reported that both cell-mediated and humoral-mediated processes might play the role in this association [4]. The concept of autoantibodies in SLE reacting with specific myelin sheath antigens causing acute inflammatory demyelinating polyneuropathy has also been proposed [5]. Recently, some emerging concepts of a process linked with SLE pathogenesis and type I – interferon production has been investigated in animal models mimicking GBS [6]. Therefore, immunosuppressive agents seem to be effective options but no standard treatment guidelines have yet been established. The previous reports have been reviewed and summarized in Table 1[5,7-16].

<table>
<thead>
<tr>
<th>Case report</th>
<th>Age/ sex</th>
<th>Onset</th>
<th>Treatment</th>
<th>outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hsu et al.[10]</td>
<td>28/F</td>
<td>At presentation</td>
<td>Immediate PE, steroid</td>
<td>Nearly complete recovery after 2 weeks</td>
</tr>
<tr>
<td>Santiago-Casas et al.[7]</td>
<td>20/F</td>
<td>At presentation</td>
<td>PE * 5 times+ IVIG (0.4mg/Kg) * 5d with no response then IVCY500mg/m * 5 times +MPS 60mg/d *4wk</td>
<td>Improve after 4 weeks Full recovery after 4 months</td>
</tr>
<tr>
<td>Santiago-Casas et al.[7]</td>
<td>34/F</td>
<td>1 month after dx SLE</td>
<td>MPS 1gm * 3d ->IVIG 0.4mg/Kg *5d ->IVCY 500mg/m *6d</td>
<td>Complete resolution after 6th IVCY</td>
</tr>
<tr>
<td>Van Larrhoyen et al.[5]</td>
<td>20/F</td>
<td>At presentation</td>
<td>IVIG 0.4mg/Kg 5d with no response then IVCY 750mg/m2/month6d + prednisolone at day 30</td>
<td>Improve at day 45 Fully recovery after 6 months</td>
</tr>
<tr>
<td>Bingisser et al.[15]</td>
<td>17/F</td>
<td>4 months after dx SLE</td>
<td>IVIG 0.4mg/Kg *5d with no response then IVCY 100mg + MPS 1gm *4d, PE at d14 * 5d</td>
<td>Improve after 3rd session of PE Fully recovery after 5th PE</td>
</tr>
<tr>
<td>Miyagawa et al.[12]</td>
<td>13/F</td>
<td>6 years after dx SLE</td>
<td>PE total * 13d then IVIG 0.4mg/Kg *3d then MPS 1gm. * 3d</td>
<td>Complete recovery after 5 months</td>
</tr>
<tr>
<td>Vaidya et al.[14]</td>
<td>23/M</td>
<td>At presentation</td>
<td>PE* 8d then MPS 1 gm* 3d then IVCY 1 gm *1d</td>
<td>Nearly complete recovery (no time mentioned)</td>
</tr>
<tr>
<td>Millette et al.[16]</td>
<td>23/F</td>
<td>At presentation</td>
<td>ACTH * 10d then Prednisolone 80 MKD</td>
<td>Improve at 2 months Complete recovery at 4</td>
</tr>
</tbody>
</table>
From previous case reports, we found that half of the patients presented with GBS as an initial symptom of SLE and most of the patients nearly or fully recovered after treatment. The recovery time had a wide range from 2 weeks to 6 months. Varying responses to different treatment modalities have been noted. Concerning the association of GBS and SLE, the efficacy of standard IVIG in GBS alone is insufficient. Only one case was reported that responded well to second course of IVIG.[17] Most of the cases were well controlled with immunosuppressive agents that are used in lupus treatments. Similar to the patient in our case, her clinical condition failed to respond to intravenous immunoglobulin and plasmapheresis, the standard GBS regimens, but markedly improved after the third cycle of intravenous cyclophosphamide, thus resulting in complete recovery at 4 months after treatment.

Table 1: Summary of previous case reports of GBS and SLE.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Sex</th>
<th>Age</th>
<th>Interval after dx SLE</th>
<th>Treatment Details</th>
<th>Recovery Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stahl et al.[13]</td>
<td>56/F</td>
<td>4 months</td>
<td>IVIG 0.4mg/Kg * 5 d then AZA, MPS and IVCY</td>
<td>Improve after CSF filtration 10 days (50 d after onset)</td>
<td></td>
</tr>
<tr>
<td>Lewis et al.[11]</td>
<td>26/M</td>
<td>5yr</td>
<td>IVCY 500 mg weekly *4d IVIG 0.4</td>
<td>Complete recovery 10 days after IVIG (after IVCY treatment 6 weeks)</td>
<td></td>
</tr>
<tr>
<td>Yildiz et al.[9]</td>
<td>47/F</td>
<td>20 years</td>
<td>MPS 1 gm/d *10d/ IVCY 1</td>
<td>Walk with aid after 3 months</td>
<td></td>
</tr>
<tr>
<td>Rajadhyaksha et al.[8]</td>
<td>30/F</td>
<td>At presentation</td>
<td>IVIG 0.4 mg/Kg MPS 1 gm * 5 d</td>
<td>Nearly complete recovery 2 weeks after treatment</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation:

ACTH : Adrenocorticotropic hormone;
AZA : Azathioprine;
CSF : Cerebrospinal fluid;
Dx : Diagnosis;
d : Day;
F : Female;
M : Male;
MPS : Methylprednisolone;
IVCY : Intravenous Cyclophosphamide;
IVIG : Intravenous Immunoglobulin;
PE : Plasma exchange;
SLE : Systemic Lupus Erythematosus

Conclusion

To our knowledge, we reported the first and youngest case of pSLE in which the patient presented with GBS and achieved complete recovery through intravenous cyclophosphamide pulse therapy. We recommend that the most effective treatment in the setting of pSLE and concurrent GBS is intravenous cyclophosphamide pulses rather than the standard treatment used for GBS.

Conflicts of Interest

There are no conflicts.

Copyright: ©2018 Jamie Murphy *. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permit unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.